
 SD Flash Controller

January 2010 Reference Design RD1048

www.latticesemi.com 1 rd1048_01.1

© 2010 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
The Secure Digital (SD) Card is a Flash-based memory card that is widely used in today’s consumer electronic
devices. Its high-capacity, compact package and security make it a suitable candidate for both video and audio
applications in electronic products. Some common consumer products that make use of SD cards include digital
cameras, personal computers, printers, mobile phones and car navigation systems. The SD technology is consid-
ered a de-facto standard in the industry for data storage. There is a high demand for SD cards in both portable and
desktop consumer products.

The SD card supports two communication transfer protocols, SD Bus mode and SPI Bus mode. The SD Flash
Controller Reference Design supports SPI mode. The SPI Communication Protocol complies with SD Physical
Layer Simplified Specification 2.0.

This document discusses the following topics.

• Operation command token, response command token and data token

• SD card initialization

• Read and write of a single block on a SD card

• State machine and functional description of design modules

The interface of the SD Flash Controller is based on the WISHBONE bus standard. The WISHBONE interconnec-
tion makes system-on-chip (SoC) and design reuse easy by creating a standard data exchange protocol. The SD
Flash Controller with WISHBONE bus interface allows the designer to easily connect SoC systems to a standard
SD card. It includes reset, initialization, reading of a single block and writing of a single block.

Theory of Operation
Overview
The SD Flash Controller is used to set up communication between a microprocessor and a SD card. It supports the
translation protocol from a serial peripheral interface (SPI) bus to the SD stack. Figure 1 shows the signal interface
of the system.

Figure 1. System Signal Interface

The block diagram of the SD card controller and signal flow are shown in Figure 2.

Data_i(7:0)

Add_i(7:0)

Data_o(7:0)

ACK

STB_I

RST_I

CLK_I

WE_I

spiClkOut

spiDataIn

spiDataOut

spiCs_n

WISHBONE
Bus

SD FlashSD Flash
Controller

MCU

Lattice Semiconductor SD Flash Controller

2

Figure 2. SD Card Controller Block Diagram and Signal Flow

System Features

• Full SD memory card support, including card reset, initialization, direct access, single block read and single block
write

• Basic SPI mode bus access

• 512-byte receive and transmit FIFO

• 8-bit slave WISHBONE interface

• Data access up to 24 Mbps

• Separate clocks for the WISHBONE interface and SPI core logic

• SPI clock frequency configurable via bus interface

• Data transfer at speeds close to SD card maximum rate

• Force transmit FIFO empty and receive FIFO empty

• Turn off transmit FIFO writing clock and receive FIFO reading clock

• Initialization error indication, writing data error indication, and reading data error indication

MCU

txfifo

rxfifo

SPI WISHBONE
Bridge

User Register
Control

SPI
Control

Init
Process

CMD
Pro

Data
Process

SPI2SD
Transfer

SD
Card

WISHBONE
Bus

Interface

Lattice Semiconductor SD Flash Controller

3

Signal Descriptions
A summary of the top-level signals is shown in Table 1.

Table 1. Top-level Signal Descriptions

Operation
The SD Flash Controller includes card-specific functions composed of reset, initialization, reading single block and
writing single block, and implements the standard interface to card stack as the bus master for the SD system. The
SD Flash Controller is a slave to the Microprocessor Unit (MCU) and consists of command and control registers,
transmits FIFOs and receives FIFOs. The host has access to these registers and FIFOs and generates commands,
interprets responses, and controls subsequent actions. The SPI bus connects the card to the controller. The host
can turn spiClkOut on and off. The card stack and the controller communicate serially through the data lines and
implement a message-based protocol. The messages consist of the following tokens:

• Command Token – A command token is 6 bytes long. The command set includes card initialization, card regis-
ter read and write, data transfers and data erasure. The SD Flash Controller sends command token serially on
the spiDataIn signal. The format of a command token is shown in Table 2.

Table 2. Command Token Format

• Response Token – A response token is an answer to a command token. Each command has either a specific
response type or no response type. The format of a response token varies according to the expected response
and the card’s mode. The response token formats are detailed in the SD Physical Layer Specification. The
response token is transferred on the spiDataOut wire.

• Data/Data Token – The data token is transferred serially between the host and the card in 8-bit blocks at rates
up to 24 Mbps for SPI mode data transfers. In this reference design, each data block is 512 bytes which equals
one sector of the SD card. Before the valid data is transmitted, the host must transmit the data token to the SD
card. The format of the data token depends on the card’s mode. Table 3 shows the data token format for both SD
mode and SPI mode. The data token is transferred on the spiDataIn wire.

Interface Signal Type Description

Microprocessor
Interface

spiSysClk Input Main process clock, 50MHz

clk_i Input WISHBONE clock input, asynchronous with spiSysClk_25MHz

rst_i Input WISHBONE reset. Synchronous to clk_i, hardware reset signal.

address_i[7:0] Input WISHBONE address input signal

data_i[7:0] Input WISHBONE data input signal

data_o[7:0] Output WISHBONE data output signal

writeEn Input WISHBONE write enable signal

strobe_i Input WISHBONE strobe input signal

ack_o Output WISHBONE acknowledge signal

SD Card
Interface

spiClkOut Output SPI clock signal, clock speed configurable

spiDataIn Input SPI serial data from slave

spiDataOut Output SPI serial data to slave

spiCs_n Output SPI device chip select

Bit Position 47 46 [45:40] [39:8] [7:1] 0

Width (bits) 1 1 6 32 7 1

Value 0 1 x x x 1

Description Start bit Transmission bit Command index Argument crc7 End bit

Lattice Semiconductor SD Flash Controller

4

Table 3. Data Token Format

SPI Mode Description
SPI mode is an optional communications protocol of the SD card. SPI mode is selected on power-up when the first
reset command (CMD0) is sent and the chip is selected. The communication mode cannot be changed unless the
SD card goes through power cycling.

In SPI mode, all command, data, and response tokens are 8 bits long and are transmitted immediately following the
assertion of the respective chip select. The SD samples input data on the positive edge of spiClkOut and output
data on the negative edge of the spiClkOut. The command token is protected with a 7-bit CRC. The SD card sends
a response to the controller after a command token. The response token has four formats, including CRC results.
The length of the response tokens is one, two, or five bytes. In this reference design, the results of CRC calculation
are appended in the command and data.

Read and write data transfers are protected with the 16-bit CRC. In write data transfers, after the data and 16-bit
CRC have been transmitted, the card sends a 5-bit status token. The CRC status token indicates if the data trans-
mission was erroneous. After the CRC status token, the card can indicate that it is busy programming data by pull-
ing the data line low.

SPI Bus Description
The SD card communication channel is serial in nature and is initiated by a start bit and terminated by a stop bit.
The SPI communication format is byte oriented. Every command or data block is built of 8-bit bytes and is byte-
aligned to the chip select (CS) signal. All communication between host and cards is controlled by the host. The
host starts every bus transaction by asserting the CS signal low.

SPI Read Data Operation
SPI mode supports single block read and multi-block read. The host can send CMD17 or CMD18 to read SD card
data. When a reading operation is received by the SD card, the card generates a response token in response to the
reading operation. Figure 3 shows the SPI mode read timing diagram.

Figure 3. Single Block Read Operation

The data block is protected by CRC16 which is complied with the CCITT (X16+X12+X5+1) standard. The address of
the read operation is the parameter of CMD17, which must include a legal physical sector address. If the operation
generates an error, the SD card generates an error response to the controller. The controller judges the response
indication to determine what to do in the next step. When the time of the operation is longer than the time specified
in the SD specification, the SD card generates a time out feedback signal as the response signal. In this reference
design, the command is sent as a constant parameter to the SD card.

Stream Data 1 x No CRC 1

Block Data 0 x x 1

Description Start bit Data CRC7 End bit

DataIn Command

From host
to card

From card
to host

Data from
card to host

Next
command

Command

DataOut Response Data Block CRC

Lattice Semiconductor SD Flash Controller

5

SPI Write Data Operation
SPI mode supports single block write operations and multi-block write operations. The host sends CMD24 or
CMD25 to write to the SD card. When a writing operation is requested by the host, the SD card generates a
response token to the writing operation which indicates the state of the SD card. Figure 4 shows SPI mode write
timing diagrams.

Figure 4. Single Block Writing Operation

Each data block has a data token as the indication to the SD card. When a block is received, the SD card gener-
ates a response. If the data block is correctly received and the CRC results are right, the transmitted data is pro-
grammed into the sector by the SD card. In return, the SD card generates a busy signal as a response. The
address parameter is part of the write command.

Reset Operation
The SD Flash controller can only be reset by a hard or soft reset from the microprocessor. The hard reset is from
the hardware reset. All registers and FIFO controls are set to their default values after any reset. The user can send
the CMD0 to reset the SD card. The CMD0 command can break any operation even if the SD card is busy.

Initialization Operation
After reset, the SD card must be initialized by sending more than 80 clocks to it on the SpiClkOut signal. To initialize
the SD card, set the DAT [INIT] bit to a 1. This sends 80 clocks before the current command in the CMD register.
This function is useful for acquiring new cards that have been inserted on the bus. Chip selects are not asserted
during the initialization sequence while in SPI mode.

After the 80-clock initialization sequence, the software must continuously send CMD1 by loading the appropriate
command index into the SD_CMD register until the card indicates that the power-up sequence is complete. The
MCU can then assign an address to the card or put it into SPI mode.

Error Detection Operation
In this reference design, initialization errors, writing data errors and reading data errors can be detected during
transmission. If an error is detected in processing, the SD card will generate an error indication to the host. The
host can read the TRANS_ERROR_REG register to judge the state of the controller.

The following steps outline the fundamental operation of the SD card.

Initialize
Set SPI_TRANS_TYPE_REG = SPI_INIT_SD
Set SPI_TRANS_CTRL_REG = SPI_TRANS_START
Wait for SPI_TRANS_STS_REG != TRANS_BUSY
Check for SPI_TRANS_ERROR_REG [1:0] == INIT_NO_ERROR

DataIn

DataOut

From host
to card

New command
from host

From card
to host

Data response
and busy
from card

Data from
host to

card

Start
block
token

Command CommandData Block

Response Busydata_response

Lattice Semiconductor SD Flash Controller

6

Block Write
Write 512 bytes to SPI_TX_FIFO_DATA_REG
Set the SD block address registers:
SD_ADDR_7_0_REG
SD_ADDR_15_8_REG
SD_ADDR_23_16_REG
SD_ADDR_31_24_REG
Set SPI_TRANS_TYPE_REG = SPI_RW_READ_SD_BLOCK
Set SPI_TRANS_CTRL_REG = SPI_TRANS_START
Wait for SPI_TRANS_STS_REG! = TRANS_BUSY
Check for SPI_TRANS_ERROR_REG [5:4] == WRITE_NO_ERROR

Block Read
Set the SD block address registers:
SD_ADDR_7_0_REG
SD_ADDR_15_8_REG
SD_ADDR_23_16_REG
SD_ADDR_31_24_REG
Set SPI_TRANS_TYPE_REG = SPI_RW_READ_SD_BLOCK
Set SPI_TRANS_CTRL_REG = SPI_TRANS_START
Wait for SPI_TRANS_STS_REG! = TRANS_BUSY
Check for SPI_TRANS_ERROR_REG [3:2] == READ_NO_ERROR
Read 512 bytes from SPI_RX_FIFO_DATA_REG

Register Descriptions
Table 4 lists the registers used in this reference design. All registers are 8 bits wide.

Table 4. User Register

Table 5 describes each register in detail. R denotes read only, W denotes write only and R/W denotes read and
write.

Register Name Address Type

SPI_MARSTER_VERSION_REG 0x0 Read

SPI_MARSTER_CONTROL_REG 0x1 Read/Write

TRANS_TYPE_REG 0x2 Read/Write

TRANS_CTRL_REG 0x3 Read/Write

TRANS_STS_REG 0x4 Read

TRANS_ERROR_REG 0x5 Read

DIRECT_ACCESS_DATA_REG 0x6 Read/Write

SD_ADDR_7_0_REG 0x7 Read/Write

SD_ADDR_15_8_REG 0x8 Read/Write

SD_ADDR_23_16_REG 0x9 Read/Write

SD_ADDR_31_24_REG 0xa Read/Write

SPI_CLK_DEL_REG 0xb Read/Write

RX_FIFO_DATA_REG 0x10 Read/Write

RX_FIFO_DATA_COUNT_MSB 0x12 Read/Write

RX_FIFO_DATA_COUNT_LSB 0x13 Read/Write

RX_FIFO_CONTROL_REG 0x14 Read/Write

TX_FIFO_DATA_REG 0x20 Read/Write

TX_FIFO_CONTROL_REG 0x24 Read/Write

Lattice Semiconductor SD Flash Controller

7

Table 5. Register Detail

Register
Bit

Position Name Description Default R/W

SPI_MARSTER_VERSION_REG
[7:4] VERSION_NUM_MAJOR Major revision number. F R

[3:0] VERSION_NUM_MINOR Minor revision number. F R

SPI_MARSTER_CONTROL_REG 0 RST 1: Reset the core logic and registers. Self clearing. 0 W

TRANS_TYPE_REG [1:0] TRANS_TYPE

Sets the transaction type, where:
2'b00:Direct Access;
2'b01:INIT_SD;
2'b10:RW_READ_SD_BLOCK;
2'b11:RW_WRITE_SD_BLOCK;

0 W

TRANS_CTRL_REG 0 TRANS_START 1'b1:Start transaction. Self clearing. 0 W

TRANS_STS_REG 0 TRANS_BUSY 1'b1:Transaction busy 0 R

TRANS_ERROR_REG

[5:4] SD_WRITE_ERROR

2'b00:Write NO ERROR;
2'b01:Write CMD ERROR;
2'b10:Write DATA ERROR;
2'b11:Write BUSY ERROR;

0 R

[3:2] SD_READ_ERROR
2'b00:Read NO ERROR;
2'b01:Read CMD ERROR;
2'b10:Read TOKEN ERROR;

0 R

[1:0] SD_INIT_ERROR
2'b00:INIT NO ERROR;
2'b01:INIT CMD0 ERROR;
2'b10:INIT CMD1 ERROR

0 R

DIRECT_ACCESS_DATA_REG
[7:0] TX_DATA

Set TX_DATA prior to starting a DIRECT-
_ACCESS transaction. Note that the SPI bus has
no concept of a read or write transaction. Thus,
every DIRECT_ACCESS transaction transmits
data from the SPI master and receives data from
the SPI slave.

0 W

[7:0] RX_DATA Read RX_DATA after completing a DIRECT-
_ACCESS transaction. 0 W

SD_ADDR_7_0_REG [7:0] SD_ADDR_7_0

SD_ADDR [7:0].Normally set to zero because
memory accesses should occur on a 512-byte
boundary. Set the SD/MMC memory address
before starting a block read or block write

00 R/W

SD_ADDR_15_8_REG [7:0] SD_ADDR_15_8
SD_ADDR [15:8]. Normally set SD_ADDR[8] to
zero because memory accesses should occur on a
512-byte boundary

00 R/W

SD_ADDR_23_16_REG [7:0] SD_ADDR_23_16 SD_ADDR[23:16] 00 R/W

SD_ADDR_31_24_REG [7:0] SD_ADDR_31_24 SD_ADDR_31_24 00 R/W

SPI_CLK_DEL_REG [7:0] SPI_CLK_DEL

SPI_CLK_DEL controls the frequency of the
SPI_CLK after SD initialization is complete. When
setting clock frequency during SD initialization, you
will need to modify the constant in spiMaster
_defines.v SPI_CLK_DEL= (spiSysClk / (SPI_CLK
* 2)) -1.

00 R/W

RX_FIFO_DATA_REG [7:0] RX_FIFO_DATA SD/MMC block read data. 00 R

RX_FIFO_DATA_COUNT_MSB [7:0] FIFO_DATA_COUNT_MSB MSByte of FIFO_DATA_COUNT.
Indicates the number of data entries within the fifo. 00 R

RX_FIFO_DATA_COUNT_LSB [7:0] FIFO_DATA_COUNT_LSB LSByte indicates the data entries within the FIFO. 00 R

RX_FIFO_CONTROL_REG 0 FIFO_FORCE_EMPTY 1 = Force FIFO empty. Deletes all the data sam-
ples within the FIFO. Self clearing. 00 W

TX_FIFO_DATA_REG [7:0] TX_FIFO_DATA SD/MMC block write data. FIFO size matches the
SD/MMC block size of 512 bytes. 00 W

TX_FIFO_CONTROL_REG 0 FIFO_FORCE_EMPTY 1 = Force FIFO empty. Deletes all the data sam-
ples within the FIFO. Self clearing. 00 W

Lattice Semiconductor SD Flash Controller

8

Design Module Descriptions
The SD Flash Controller is the link between the microprocessor and the SD Flash SPI bus. It is responsible for tim-
ing and protocol between microprocessor accession and the SD Flash SPI bus. It consists of control and status
registers, one 8-bit receive data FIFO which is 512 entries deep, and one 8-bit transmit FIFO which is 512 entries
deep. The microprocessor reads and writes the SD Flash Controller registers and FIFOs in order to initiate commu-
nication to a card. The communication protocol of this reference design is based on SPI mode. The SD Flash Con-
troller begins operation and reads the state of the SD card by accessing the user registers.

SpiMasterWishBoneBI Module
This module provides a bridge between the WISHBONE bus and the controller. The host can configure different
user registers of the Controller to implement different operations. This module includes three user registers, the
CTRL_STS_REG_BASE register, the RX_FIFO_BASE register and the TX_FIFO_BASE register. The
CTRL_STS_REG_BASE register indicates the receiving data from the state user register, the RX_FIFO_BASE
register indicates the receiving data from the receive FIFO, and the TX_FIFO_BASE indicates the receiving data
from the transmit FIFO. At the same time, it generates an ack signal to the WISHBONE bus.

CtrlStsRegBI Module
This module is the transfer control unit and includes four functions of the controller. According to the host configu-
rating user register, it can generate the start signal of each operation, generate a direct accessing control signal,
judge the type of the current configuration, monitor the internal state of the controller, configure the sector address
of the current read or write operation, and implement the reset signal synchronous with the spiSysClk.

SpiCtrl Module
This module carries out the required operations based on the transfer type. It first waits the start signal of the oper-
ation, then judges the input transfer type to generate the reset request signal, initialization request signal, reading
request signal and writing request signal.

Figure 5 shows the SpiCtrl module control state machine.

Figure 5. SpiCtrl Module State Machine

ST_S_CTRL
/000/

WT_S_CTRL_REQ
/001/

DIR_ACC
/011/

INIT
/100/

WT_FIN2
/101/

RW
J1

/110/

WT_FIN3
/111/

rst== 1'b1

spiTransCtrl==
`TRANS_START

spiTransType==
`DIRECT_ACCESS

rxDataRdy
== 1'b1

spiTransType==
`INIT_SD

SDInitRdy
== 1'b1

spiTransType==
`RW_WRITE_SD_BLOCK

spiTransType==
`RW_READ_SD_BLOCK

readWriteSDBlockrdy
== 1'b1

WT_FIN1
/010/

Lattice Semiconductor SD Flash Controller

9

InitSD Module
This module implements the initialization function. When an SD card is powered up and the communication mode
is SPI mode, the SD card enters the initialization process. The host must first generate the CMD0, CMD8, CMD55
and ACMD41 commands to start the initialization process to reset and initiate the SD card. For the simple imple-
mentation and saving resource, the CMD0 and CRC are implemented as parameters in this design.

The generated command byte is transferred to the send CMD module.

Figure 6 shows the main control state machine.

Figure 6. SD Card Initialization State Machine

Lattice Semiconductor SD Flash Controller

10

ReadWriteSDBlock Module
This module implements data processing operations that read and write data from and into the SD card. In this ref-
erence design, the width of the address is 32 bits and the capacity is up to 2G bits. When the host wants to start
reading or writing the SD card, it must configure the address of the operation. When a reading operation request is
received from the microprocessor, the main state machine generates a read command (CMD17) to start the read-
ing process. When a writing operation request is received, the main state machine generates a write command
(CMD24) to start the writing operation. In this reference design, the Controller can only support single block opera-
tion.

The CMD17 and CRC are defined as follows:

CMD_BYTE = 8’h51
Data_BYTE1=blockAddr[31:24]
Data_BYTE2= blockAddr[23:16]
Data_BYTE3= blockAddr[15:8]
Data_BYTE4= blockAddr[7:0]
CheckSumByte=8’hff

The CMD24 and CRC results (constant value 7’h3f) are defined as follows:

CMD_BYTE= 8’h58
Data_BYTE1=blockAddr[31:24]
Data_BYTE2= blockAddr[23:16]
Data_BYTE3= blockAddr[15:8]
Data_BYTE4= blockAddr[7:0]
CheckSumByte=8’hff

Figure 7 shows the read and write SD block state machine.

Figure 7. SD Card Read and Write SD Block State Machine

rst== 1'b1

readWriteSDBlockR
eq== 1'b1

WR_TOKE
N_FF1_ST
/000110/6

WR_CMD
_WT_FIN
/000010/2

WR_CMD
_DEL

/000011/3

WR_TOKE
N_FF1_FIN
/000101/5

WR_DATA_
RD_FIFO2
/001110/14

WR_DATA_
D_ST

/001100/12

WR_TOKE
N_FF2_ST
/001000/8

WR_TOKE
N_FF2_FIN
/000111/7

WR_DATAN
_LOOP_CNT
/001111/15

WR_DATA_
CS_ST1

/010000/16

WR_TOKE
N_FE_FIN
/001001/9

sendCmdRdy

== 1'b1

(sendCmdRdy== 1'b1)&&(respTout == 1 || respByte != 8'h00)

txDataFull== 1'b0

txDataFull== 1'b0

txDataFull

== 1'b0

txDataFull== 1'b0

loopcnt== 9'b0

txDataFull== 1'b0
txDataFull== 1'b0

txDataEmpty== 1'b1

timeOutCnt ==
`WR_RESP_TO

UT

rxDataRdy== 1'b1

locRespByte[4:0]== 5'h5

delCnt2 ==
8'hff

delCnt1 ==
`MAX_8_BIT

rxDataRdy
== 1'b1

locRespByte == 8'h00
&& timeOutCnt !=

timeOutCnt ==
`TWO_FIFTY_MS

readReadSDBlockR
eq== 1'b1

(sendCmdRdy== 1'b1)&&

(respTout == 1 || respByte != 8'h00)

sendCmdRdy

== 1'b1

rxDataRdy== 1'b1

(locRespByte != 8'hfe
&& timeOutCnt !=

`ONE_HUNDRED_MS)

timeOutCnt == `ONE_HUNDRED_MS

rxDataRdy== 1'b1

delCnt2 == 8'hff

loopcnt== 0

txDataFull== 1'b0

txDataEmpty== 1'b1

WR_DATA_
RD_FIFO1
/001101/13

WR_DATA_
D_FIN

/001011/11

WR_TOKE
N_FE_ST

/001010/10

WR_DATA_
CS_FIN1

/010001/17

WR_DATA_
CS_ST2

/010011/19

WR_CMD_
SEND_CMD

/000001/1

WR_DATA_
DEL/101111/

47

WR_DATA_
REQ_RESP_
FIN/010110/

22

WR_DATA_
REQ_RESP_
ST/010101/21

WR_DATA_
CHK_RESP/
010100/20

WR_DATA_
CS_FIN2

/010010/18

RD_DATA_CL
R_RX/100011/

35

RD_DATA_CH
K_LOOP/
100010/34

RD_DATA_WT
_DATA/100001/

33

RD_DATA_ST_
LOOP/100000/

32

WR_BUSY_
DEL1/

101010/42

WR_BUSY_
CHK_FIN/
101000/40

WT_REQ
/000100/4

ST_RW_SD
/000000/ 0

WR_BUSY_
WT_FIN1/
101001/41

WR_BUSY_
INIT_LOOP/
101101/45

WR_BUSY_
SEND_CMD
1/101011/43

RD_DATA_CS_
ST1/100110/38

RD_CMD_S
END_CMD
/010111/23

RD_CMD
_DEL

/011001/25

RD_CMD
_WT_FIN

/011000/24

RD_DATA_CS_
FIN1/100100/36

RD_DATA_CS_
ST2/100111/39

RD_DATA_CS_
FIN2/100101/37

RD_TOKEN_
SEND_CMD
/011100/28

RD_TOKEN
_INIT_LOOP
/011110/30

RD_TOKEN_
DEL1

/011111/31

RD_TOKEN_
WT_FIN/

011011/27

RD_TOKEN_
CHK_LOOP/
011010/26

RD_TOKEN_
DEL2/011101/

29

RD_TOKEN_
DEL3/101110/

46

WR_BUSY_
DEL2/

101100/44

`TWO_FIFTY_MS

Lattice Semiconductor SD Flash Controller

11

SendCmd Module
This module receives the input command from the initialization unit and readwrite SD Block unit, receives the
response token from the SD card and generates the time out signal as the indication signal. According to the
received signals, the state machine generates the corresponding handshake signals to the related modules. At the
same time, it receives the response type from the SD card to understand the SD card status. Figure 8 shows the
main control state machine.

Figure 8. Send Command Module State Machines

SpiTxRxData Module
This module receives from four different branch data and write-enable signals which are from the SpiCtrl module,
Sendcmd module, Init module and RDWRSDBlock module. According the write enable signal, it transmits receiving
data as output to the SD card’s data and generates the txdatafull signal to trigger the writing process of the SD
card.

At the same time, it receives feedback data from the SD card. Based on the response signal, the module sends the
response data to the host.

ReadWriteSPIWireData Module
This module receives command and data from the host and receives SD card data as the feedback data. It needs
transfer receiving byte to serialize the data, then transmits and receives data to and from the SD card.

Figure 9 is the ReadWriteWireData module state machine.

CMD_DEL
/10011/

CMD_REQ_
RESP_ST

/00101/

CMD_REQ_
RESP_ST

/00110/

CMD_CHK
_RESP
/00111/

rst== 1'b1

ST_S_CMD/
10010/

WT_CMD/
10001/

CMD_SEND_
FF_ST/01111/

CMD_SEND_F
F_FIN/00010/

CMD_CMD_B
YTE_ST/10000/

txDataFull
==1’b0

txDataFull
== 1’b0

sendCmdReq
== 1’b1

txDataFull
== 1’b0

txDataFull== 1’b0

txDataFull
== 1’b0

txDataFull
== 1’b0

txDataEmpty
== 1’b1rxDataRdy== 1’b1

respByte[7]
== 1’b0

timeOutcnt
== 10’h200

CMD_CMD_BYT
E_FIN/00011/

CMD_D_BYTE
1_ST/01000/

CMD_D_BYTE
1_FIN/00100/

CMD_D_BYTE
2_ST/00001/

CMD_D_BYTE
2_FIN/00000/

CMD_D_BYTE
2_ST/01010/

CMD_D_BYTE
3_FIN/01001/

CMD_D_BYTE
4_ST/01100/

CMD_D_BYTE
4_FIN/01011/

CMD_CS_ST/
01110/

CMD_CS_FIN/
01101/

Lattice Semiconductor SD Flash Controller

12

Figure 9. ReadWriteSPIWireData State Machine

Sm_TxFifo Module
This module implements a simple FIFO and writes the host transmission data into Tx_fifo. It can force the Tx_fifo
empty if the controller receive empty command with configuring the FIFO_CONTROL_REG register. It includes two
modules, the sm_fifoRTL and the sm_TxfifoBI module.

Sm_Rxfifo Module
This module implements a simple FIFO and reads the SD transmission data into Rx_fifo. It can force the Rx_fifo
empty if the transmission process generates an error when configuring the FIFO_CONTROL_REG register. It
includes two modules, the sm_fifoRTL and the sm_RxfifoBI module.

Clock_switch Module
This is the control clock module for writing transmitted FIFO and reading received FIFO. When the user wishes to
write data to the SD card, he must first switch the clock for writing transmitted FIFO, and then he can write the data
to the transmitting FIFO and send the writing request signal to the Controller.

When the user wants to read the receiving data from the receiving FIFO, he must first switch the reading clock of
the receiving FIFO, and then he can read the data from the receiving FIFO.

Test Bench Description
The test bench for this design includes the following modules:

• testHarness

• sdModel

• wb_master_model

• Operation flow

ST_RW_WIRE
/11/

WT_TX_DATA
/00/

CLK_HI
/01/

CLK_LO
/10/

rst== 1'b1

clkDelaycnt=clkDelaycnt+1b’1;

bitcnt== 4’h8

txDataFull==1’b1

clkDelaycnt= clkDelay

rxDataRdySet<= 1’b1;
rxDataOut<= rxDataShiftReg;
txDataShiftReg<= TxDataIn;
bitCnt<= 3’b000;
clkDelayCnt<= 8’h00;
txDataFullClr<= 1’b1;
bitcnt==4’h8 &&
txdatafull= 1’b1

clkDelaycnt==
clkDelay

rsdatardyset=1’b1;
rxdataout=rxdatashiftreg;

spiClkout=1’b0;
spiDataOut=txdataShiftreg[7];
txdatashiftreg={tsdatashiftreg[6:0],1’b0};
Rxdatashiftreg={rxdatashiftreg[6:0],spidatain};
spidelaycnt=8’d0;

clkDelaycnt=clkDelaycnt+1b’1;
txdataFullclr=1’b0;

rxdatardySet=1’b0;
txdataempty=1’b0;

txdataShiftReg=txdatain;
rxdatashiftReg=8’b0;
Bitcnt=4’b0;
clkDelaycnt=8’h00;
txdatafullclr=1’b1;
Txdataempty=1’b0;

bitcnt=4’b0;
clkDelaycnt=8’b0;
txdatafullclr=1’b0;
txdatardySet=1’b0;
rxdatashiftreg=8’b0;
rxdatashiftreg=8’b0;
rxdataout==8’b0;
spidataout=8’b0;
spiclkout=8’b0;
txdataempty=1’b0;

Lattice Semiconductor SD Flash Controller

13

TestHarness Module
The testHarness module provides reset, busClk and spiSysClk to the user logic. The busClk is 25 MHz and the spi-
SysClk is 50 MHz.This module generates the test case to verify the function of the controller. The test case tests all
of the user registers, writing a single block and reading a single block.

sdModel
The sdModel is a simple behavior model of the SD card. It receives the transmission data. This model needs the
testHarness module to generate the respByte as the response byte. The output data from the SD card are all 8’hFF
except the response byte.

wb_master_model
The wb_master_model module simply simulates the function of the microprocessor. It includes three tasks, writing
a byte, reading a byte, and comparing the read data with the expected data.

Operation Flow
The basic unit of data transfer to/from the SD card is one byte. Any data transfer which requires a block size should
define the block length as an integer in multiples of bytes.

The test case tests the following functions of this SD Flash Controller:

• Host direct access one physical address (one byte) with SPI mode

• Host reset and initialization SD card

• Host writes single block (512 bytes) to the SD card

• Host reads single block (512 bytes) from the SD card

Timing Diagrams
Register Read and Write Test
This function tests the writing and reading of the user registers which include SPI_CLK_DEL_REG,
SD_ADDR_7_0_REG, SD_ADDR_15_8_REG, SD_ADDR_23_16_REG and SD_ADDR_31_24_REG.

The host first writes 8’h10 to SPI_CLK_DEL_REG, and then writes the physical address register. The host writes
the 8’h78 to address SD_ADDR_7_0_REG (8’h07), 8’h56 to address SD_ADDR_15_8_REG (8’h08), 8’h34 to
address SD_ADDR_23_16_REG (8’h09), and 8’h12 to address SD_ADDR_31_24_REG (8’h0A).

Figure 10. Register Read and Write Test Timing Diagram

Lattice Semiconductor SD Flash Controller

14

SPI Direct Accession
The host directly accesses the SD card and writes 8’h5f and 8’haa to the SD card. The user can access the
responding user register.

Figure 11. SPI Direct Accession Timing Diagram

Initialization
The host writes the TRANS_TYPE_REG and TRANS_CTRL_REG to start the initialization operation.The host
sends CMD0, CMD8, CMD55 and ACMD41 to initialize the SD card.

Figure 12. Initialization Timing Diagram

Writing SD Card
This operation requires the following steps.

1. Switch the clock to bus clock.

2. Empty the transmitting FIFO.

3. Write data to the transmitting FIFO.

4. Switch the clock to spiSysClk.

5. Toggle the transfer type.

6. Start to write the SD card.

Lattice Semiconductor SD Flash Controller

15

The host sends data to the SD card after the CMD24 (8’h58).

Figure 13. Writing SD Card Timing Diagram

Reading SD Card
This operation requires the following steps.

1. Toggle the transfer type.

2. Start to write the SD card.

3. Judge whether the write receiving FIFO is complete or not.

4. Switch the reading clock to the bus clock.

5. Judge whether the read receiving FIFO is complete or not.

6. Switch the clock to spiSysClk.

The host reads data to the SD card after the CMD17 (8’h51).

Figure 14. Reading SD Card Timing Diagram

Lattice Semiconductor SD Flash Controller

16

Implementation
Table 6. Performance and Resource Utilization

References
• SD Physical Layer Simplified Specification 2.0 WISHBONE System-on-Chip Interconnection Architecture for Por-

table IP Cores

• SD Physical Layer Simplified Specification 2.0

• MMC/SD card controller (www.opencores.org/projects.cgi/web/spimaster/overview)

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History

Device Family Speed Grade I/Os fMAX (MHz) Utilization (LUTs)
Architecture
Resources

MachXO™ 1 -4 34 >50 909 1 EBR

LatticeXP2™ 2 -5 34 >50 1088 1 EBR

1. Performance and utilization characteristics are generated using LCMXO2280C-4FT256C, with Lattice ispLEVER 8.0 software. When using
this design in a different device, density, speed, or grade, performance and utilization may vary.

2. Performance and utilization characteristics are generated using LFXP2-5E-5TN144C, with Lattice ispLEVER 8.0 software. When using this
design in a different device, density, speed, or grade, performance and utilization may vary.

Date Version Change Summary

May 2009 01.0 Initial release.

January 2010 01.1 Added support for LatticeXP2 device family.

Changed initialization code for each card.

http://www.latticesemi.com/

	Introduction
	Theory of Operation
	Overview
	System Features

	Signal Descriptions
	Operation
	SPI Mode Description
	SPI Bus Description
	SPI Read Data Operation
	SPI Write Data Operation
	Reset Operation
	Initialization Operation
	Error Detection Operation
	Register Descriptions
	Design Module Descriptions
	SpiMasterWishBoneBI Module
	CtrlStsRegBI Module
	SpiCtrl Module
	InitSD Module
	ReadWriteSDBlock Module
	SendCmd Module
	SpiTxRxData Module
	ReadWriteSPIWireData Module
	Sm_TxFifo Module
	Sm_Rxfifo Module
	Clock_switch Module

	Test Bench Description
	TestHarness Module
	sdModel
	wb_master_model
	Operation Flow

	Timing Diagrams
	Register Read and Write Test
	SPI Direct Accession
	Initialization
	Writing SD Card
	Reading SD Card

	Implementation
	References
	Technical Support Assistance
	Revision History

